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Using the Langevin equation we develop the model of a stochastic process subject to a given time-dependent
regulatory mechanism. The effects of this nonstationarity on the statistical properties of the time series, i.e., on
global and conditional probability densities and on the moments of the distribution, are derived. Application of
these results on simple model trends allows one to approximate cardiological data and thus to explain effects
recently observed in the reconstruction of the deterministic part of the Langevin equation for time series of
heart rate.
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I. INTRODUCTION

The human cardiovascular system as an open system is
subject to varying environmental influences, which it has to
adapt to in order to maintain the vital functions of the organ-
ism. Measured cardiological signals and time series of the
RR intervals, i.e., of the distance between successive R peaks
in the ECG, in particular are thus a superposition of deter-
ministic reactions of the system to this changing input from
the environment on a variety of time scales, as well as of
noise sources within the body itself. Hence, in 24-h record-
ings of heart rate particularly circadian variation reflects dif-
ferent exposures of the body during day and night �see Figs.
1 and 2� �1,2�. Methods for extracting the parameters of such
oscillatory behavior have been presented by Nelson et al. �3�
and for more complex trends by Fernández and Hermida �4�.

However, while the long-range behavior of the cardiovas-
cular system, such as 24-h oscillations or phases of physical
activity, can typically be related to the patient’s specific ac-
tivity, splitting heart rate into a deterministic and a stochastic
part on small time scales is feasible only in rare cases such as
respiratory oscillations. In order to model such time series,
an equation of motion is hence needed comprising terms that
represent deterministic regulations as well as noise sources.
This purpose is served by the Langevin equation.

Conceived for describing the motion of a Brownian par-
ticle �5� the original equation more generally covers stochas-
tic processes with linear damping �6,7�. In the so-called
“Langevin approach” �8� the model is extended to include
also the cases of nonlinear deterministic forces with additive
noise. Using the definitions of a stochastic integral proposed
by Itô �9� and Stratonovich �10� the Fokker-Planck equation
of the process can be derived from the Langevin equation
�8,11�. A further generalization of the model was achieved by
admitting memory effects in the deterministic force �12–15�.
Sometimes the name is even attributed to the whole class of
processes including a stochastic force �7�.

In this article we restrict ourselves to the case of a
�-correlated noise source. We will show that we are able to
choose delay parameters in our model such that this simpli-
fication is applicable to the cardiovascular time series under
examination. Furthermore, for this model, algorithms for re-
constructing the drift and diffusion coefficients of the
Fokker-Planck equation �16� as well as the coordinate-
dependent functions in the Langevin equation �17� have been
proposed and applied to a variety of synthetic and empirical
data �18,19�. In particular, Kuusela et al. �20,21� as well as
Ghasemi and co-workers �22� have recently used this method
for the analysis of RR interval time series and have found
characteristic differences in the shape of the reconstructed
functions between healthy patients and those suffering from
congestive heart failure.

Most publications basing on the Langevin equation limit
their scope to stationary processes. From the considerations
above, however, it is obvious that this assumption does not
hold for time series of the cardiovascular system in general
�see also Refs. �23–25��. Instead we have to model these
signals as the result of a regulatory mechanism responding to
changing stress or, relocating the nonstationarity into the ad-
aptation mechanism itself and thus omitting to explicitly pre-
define an input signal, as the product of a time-varying regu-
lation.

We therefore regard the signal under examination as fol-
lowing a time-dependent trend ��t�. From the assumed an-
tagonism between noise source and regulation on the target
value �, we derive the special form of the Langevin equation
used for the subsequent analysis. The statistical properties of
this model, i.e., the probability densities and the moments of
the distribution are then calculated. In the second half of this
article we use these results to demonstrate the effects on the
algorithm mentioned above, if a process subject to time-
varying regulation is treated as stationary: By analyzing the
special case of a piecewise linear trend, we relate the two
stable fixed points that were observed in cardiological data
by Kuusela to distinct phases of constant physical stress, in
particular during day and night.*kirchner@biomed.uni-erlangen.de
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II. MODEL

In order to develop the model used in this article we start
from the Langevin equation as given by Risken �26�,

dX�t�
dt

= g�X�t�,t� + h�X�t�,t���t� , �1�

where the force g represents the deterministic mechanisms
acting on X�t�. ��t� is a stochastic process with zero correla-
tion time, the amplitude of which is modulated by h.1 Equa-
tion �1� is the most general form of a stochastic process with
additive and �-correlated noise ��t�; in comparison to Refs.
�8,9,11,16–21� g and h additionally contain an explicit time
dependency.

For the treatment of RR interval time series it has to be
taken into account that X�t� varies discretely with heart beat
number. Hence, Eq. �1� has to be discretized by introducing a
delay time � �20,21�

X�t + �� − X�t� = g�X�t�,t,�� + h�X�t�,t���t,�� , �2�

where the form of the equation remains unchanged. For the
application of our model to cardiological data it follows that
both t and � are positive integers, although the subsequent
considerations will remain correct even for real-valued t and
�.

For the regulatory component represented by g we now
assume a time-dependent set point ��t�. In case of zero sto-
chastic influences �h�0�, g�X�t� , t ,�� acts on X in such a
way that X�t+�� is set to the target value ��t+��, i.e. X�t
+��=��t+�� for all X�t�. With Eq. �2� it follows that

g�X�t�,t,�� = ��t + �� − X�t� . �3�

Inserting g back into Eq. �2�, now admitting stochastic influ-
ences, gives

X�t + �� = ��t + �� + ��t,�� , �4�

where we have set h�1 for mathematical simplicity.2 Then
X�t� is a linear combination of the two variables ��t� and
��t ,��, which are independent of each other. This fact will
allow us to express the probability density of the process X�t�
in terms of the densities ���x� and ���x� that are associated to
the individual processes of the trend and the noise source.

Equation �4� will serve as model in the subsequent analy-
sis. Thereby the following notation will be used: The signal
X�t� is observed during a time interval It= �0,T�. For t� It,
��t� varies continuously within I�=��It�= ��min,�max�.

III. PROBABILITY DENSITIES

In order to derive the statistical properties of X�t�, both
components ��t� and ��t ,�� of the signal are treated as sto-
chastic processes with associated probability densities ���x�
and ���x�.

A. Global probability density

With X regarded as the sum of the two independent ran-
dom variables � and � its probability density ��x� directly
follows �27�

��x� = ����t� + ��t − �,��� = ��� � ����x� , �5�

where

��� � ����x� = �
−�

�

���s����x − s�ds �6�

denotes the convolution of the probability densities of the
individual processes.

It is then easy to show �see Appendix A� that the moments
of X

1The following considerations aim at processes with Gaussian
probability density ���x�, as is often assumed for Langevin pro-
cesses, but are applicable to more general ��. Additional constraints
will be given, if needed, at the respective positions in the text.

2In order to take into account the increase of heart rate variability
with mean heart rate �1� due to the raised sympathetic tone �imply-
ing h=h����, X�t� has to be rescaled by dividing Eq. �4� by h���. In

this case
�h�x�

�x �0 ensures �
�x

x
h�x� 	0, so that the change of variables

x→ x
h�x� is bijective.

FIG. 1. 24-h time series of RR intervals X�t� over beat
number t.

FIG. 2. 24-h time series of RR intervals X�t� over beat
number t.
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�Xn� � �
−�

�

xn��x�dx �7�

can be related to the the moments of ��t� and ��t ,��,

��n� � �
−�

�

xn���x�dx , �8�

��n� � �
−�

�

xn���x�dx , �9�

by the following equation:

�Xn� = 	
k=0

n 
n

k
���k���n−k� . �10�

In order to determine ���x� from an analytically given,
continuous ��t�, it is required that for every interval J the
corresponding probability P���t��J for ��t� to be found in
J is given by the length of time, when ��t� varies within J.
From this it is derived that

���x� =
1

�It�
�� d

ds
�−1�s��

s=x
� �11�

for monotone ��t� and

���x� =
1

�It�
	

k:x�I�
�k�
�� d

ds
�k

−1�s��
s=x
� �12�

in the general case �see Appendix B�. Here It=�kIt
�k� is the

sampling interval, which is split up into disjoint subintervals
such that ��t� is monotone on each It

�k� with value set I�
�k�

=��It
�k��. Then �k

−1�x� is the inverse of the bijection ��t� on
It

�k�. Equation �12� implies for piecewise defined ��t� on It

that ���t� is constituted by the average of the densities on
each subinterval.

B. Applications

As an example consider the cosine-shaped trend

��t� = A cos�
t� �13�

superimposed with white noise �Gaussian ���x��. A realiza-
tion of the time series X�t� is shown in Fig. 3.

Using Eq. �12�

���x� =
1

�

1
�A2 − x2

�14�

is calculated by dividing It= �0;2�� into subintervals It
�1�

= �0;�� and It
�2�= �� ;2�� with ��t� being monotone on each

It
�k�. Numerical convolution of Eq. �14� and the Gaussian

density ���x� gives ��x� plotted in Fig. 4. This theoretical
prediction based on Eqs. �5� and �6� agrees with the prob-
ability distribution directly determined from the time series
in Fig. 3.

It is evident from Eq. �14� that ���x� exhibits two singu-
larities at x= ±A due to the vanishing first derivative at the
extrema of ��t�. More generally a flat tangent of the trend at
some �̃, e.g., caused by reversal points or phases of constant
��t�, results in a singularity of ���x�, which can be derived
from Eq. �12�. As a consequence the global probability den-
sity ��x� will typically exhibit a local maximum at approxi-
mately x= �̃ �see Fig. 4�. However, if one wishes to extract
information about ��t� from ��x�, it has to be noted that, as
an effect of convolution, the maxima of � are not inevitably
identical with �̃: In Fig. 4 the maxima are shifted from �̃
= ±1 to smaller �x�, as ���x� is not symmetric about ±1.

For 24-h time series of RR intervals the effect of circadian
variance can clearly be observed in the well-known bimodal
probability distribution: As noted in the introduction the
trend can in this case be approximated by a cosine-shaped
function or, what will be shown later, by a ��t� being con-
stant during day and night. In both cases ���x� exhibits two
singularities which in turn cause a twice peaked probability
distribution.

C. Conditional probability density

The conditional probability density ��x̂ �x ,�� for finding
some X�t+��= x̂ given that its predecessor X�t�=x is defined
by

FIG. 3. Time series X�t� of the cosine-shaped trend �13� �A
=−1, 
=1� with superimposed white noise ��=0.2�.

FIG. 4. Empirical probability distribution ��x�dx determined
from the time series in Fig. 3 �step function� and calculated by
convolving �� and �� �thick line�. Note that the loci of the poles in
���x� �marked as dashed vertical lines� do not coincide with the
maxima of ��x�.
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��x̂�x,��dx̂ = P�x̂  X�t + ��  x̂ + dx̂�X�t� = x . �15�

Using the identity

��x̂�x,�� =
��x̂,x���

��x�
�16�

�27�, where ��x� is known from Eq. �5�, the problem of cal-
culating ��x̂ �x ,�� is shifted towards the question how to de-
termine the joint density ��x̂ ,x ��� for finding t with X�t�=x
and X�t+��= x̂.

As ��t ,�� and ��t+� ,�� were assumed to be uncorrelated,
the joint probability density ��x̂ ,x �� , t� for fixed t is written
as the product of probabilities for two independent pro-
cesses:

��x̂,x��,t�dx̂dx = P�X�t + �� � �x̂, x̂ + dx̂��t

�P�X�t� � �x,x + dx��t . �17�

As � is given by t and t+� respectively, the probabilities
only depend on the stochastic process �. Therefore

��x̂,x��,t� = ���x − ��t�����x̂ − ��t + ��� . �18�

The global conditional probability density is then calculated
by integrating over the whole time series:

��x̂,x��� =
1

T − �
�

0

T−�

���x − ��t�����x̂ − ��t + ���dt .

�19�

We consider the limiting case ��0, which is valid for all
� with ��t����t+��. Using this approximation and changing
the integration variable from t to �

��x̂,x�0� =
1

T
�

��0�

��T�

���x − �����x̂ − ��
dt

d�
d�

= �
I�

���x − �����x̂ − ��
1

T
� 1

�d�/dt�
�d�

=
�11��

I�

���x − �����x̂ − �������d� . �20�

Here without loss of generality we assumed monotonically
increasing ��t� and used the rule for differentiating the in-
verse of a function �28�. See Appendix C for the proof of Eq.
�20� in the case of general ��t�.

IV. STATIONARY TREATMENT OF THE MODEL:
THE RECONSTRUCTION OF g„x…

Friedrich et al. have recently proposed a method for re-
covering the deterministic term g�x� in Eq. �2� from experi-
mental data �17�, if the process under consideration is sta-
tionary. Observations based on this algorithm, e.g., number
and stability of fixed points, however, are masked by a time
dependency of the regulatory mechanism. In view of the
wide field of applications indicated in the introduction it
seems advisable to demonstrate how to determine the effects

of such trends on the shape of g�x� and to calculate this
function for some simple cases of ��t�, which might serve as
a first approximation of general time series.

A. Method of reconstruction

Assuming g and h to be functions of x only, Eq. �2� is
averaged over time for all X�t�=x, yielding

g�x��� = �X�t + �� − X�t��X�t�=x = �X�t + ���X�t�=x − x ,

�21�

which is stated in Refs. �17,26� for the continuous case �Eq.
�1��. With the notation introduced above Eq. �21� is rewritten

g�x��� = �
−�

+�

x̂��x̂�x,��dx̂ − x =
�16� 1

��x��−�

+�

x̂��x̂,x���dx̂ − x .

�22�

In the limiting case ��0

g�x� ª g�x�0� =
1

��x��I�

s���x − s����s�ds + �
−�

+�

s���s�ds − x

�23�

is obtained �see Appendix D for a proof�.3 If ���x� is sym-
metric around x=0 as in the case of Gaussian noise, the
second term vanishes.

B. Special cases

The results derived above are applied on simple model
trends, which allows one to approximate ��t� underlying em-
pirical data.

1. Piecewise constant trend

A trend

��t� = 	
k

�k��It
�k���t� �24�

�with ��J��t�=1 for t�J and =0 otherwise�, which is con-
stant over subintervals It

�k�, gives an associated probability
density

���x� = 	
k

�It
�k��

�It�
��x − �k� . �25�

By inserting this equation into Eq. �23�

3As we stated above, the approximation ��0 is valid for all � that
are small compared to the time scale of the trend, i.e., if ��t�
���t+��∀ t� It. This allows one to apply the analysis of g�x� to all
g�x ��� that are reconstructed by the use of Eq. �21� with an empiri-
cal � that satisfies the given condition. Note that, in particular, �
�1 for discrete time series.
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g�x� =

	
k

�k�It
�k�����x − �k�

	
k

�It
�k�����x − �k�

− x �26�

is obtained under the assumption of symmetric ���x�. g�x� is
plotted in Fig. 5 for k=2, �1,2= ±1, �It

�1��= �It
�2�� in the case of

white noise with two different standard deviations �. If the
overlap of the ���x−�k� can be neglected, g�x� is approxi-
mated by a straight line with slope −1

g�x� = − x + �k��U��k���x� �27�

in some neighborhood U��k� of �k.
This analysis is confirmed by numerical simulations: By

the use of Eq. �21� g�x �1� is computed from a discrete time
series subject to the trend

��t� = �− 1 t � �0,0.3T� ,

+ 1 t � �0.3T,T� � �28�

with additive white noise �Fig. 6�. The two neighborhoods
U�±1� can clearly be distinguished, while the relatively small
value of � leads to sharp edge at x�0.

2. Linear trend

A linearly increasing trend

��t� =
�I��
�It�

t + �min �29�

has a constant probability density

���x� =
�It�
�I��

��I���x� . �30�

Inserting this in Eq. �23� gives

g�x� =

�
I�

����x − ��d�

�
I�

���x − ��d�

− x �31�

for symmetric ���x�.
If ���x� is concentrated on some interval I�= �−� ,�� and

x� ��min+� ,�max−��, then g vanishes, as can be seen in Fig.

FIG. 5. g�x� as given in Eq. �26� for white noise with �1,2= ±1,
�It

�1��= �It
�2�� and standard deviation �=0.4 �continuous line� and �

=0.8 �dotted line�, respectively.

FIG. 6. g�x �1� for the piecewise constant trend given in Eq. �28�
superimposed with white noise ��=0.2, T=106, �=1�. According to
Eq. �27� two neighborhoods U��k� with zero crossings at x=�k are
observed for �1,2= ±1.

FIG. 7. g�x �1� for the linearly increasing trend given in Eq. �29�
superimposed with white noise �

�I��
�It�

= 2
T , �min=−1, �=0.2, T=106,

�=1�. g�x �1��0 around x=0 and approaches linear behavior with
slope −1 for large enough �x�.

FIG. 8. g�x �1� for the trend given in Eq. �32� superimposed with
white noise ��=0.2, T=106, �=1�. x values at approximately 0 will
mostly be found in the transitional phase of the time series, so that
g�x �1� coincides with g from Fig. 7 at x�0. The linear phases with
slope −1 and zero crossings at x� ±1, however, are due to the
constant sections of ��t� with �1,2= ±1.
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7. For large enough �x�, g approaches linear behavior with
slope −1 �see Appendix E for the proofs of the given results�.

3. Piecewise constant trend with transitional phase

Empirical data is in a first approximation described as
governed by a piecewise constant or linearly monotone ��t�
as analyzed in the last two paragraphs. The combination of
these two models describes constant phases as defined in Eq.
�24�, which are connected by a linear transition period analo-
gous to Eq. �29�. Figure 8 shows g�x �1� for the trend

��t� = �
− 1, t � �0,0.3T� ,

− 1 +
2t

0.4T
, t � �0.3T,0.7T� ,

+ 1, t � �0.7T,T�
� �32�

with additive white noise. For �x�	1 the same behavior as in
Fig. 6 is observed: Decreasing g with slope −1. For x�0 in
contrast the function is dominated by the transitional period:
g is flattened between the two zero crossings. This effect is
similar to the case, in which the standard deviation � of the
stochastic process ��t ,�� is increased �see Fig. 5�.

C. Application to physiological data

Application of the method of reconstruction described
above on 24-h time series of RR intervals has recently shown
an n-stable deterministic force g�x ���, where n typically
equals to 2 �20,21�. Thereby a stable node was constituted by
a zero crossing with negative slope. This observation is sup-
ported by our own data analysis, examples of which are dis-
played in Figs. 9 and 10.

For large enough time delay �, g�x ��� bears resemblance
to our simulations in Figs. 5 and 8. This similarity is ascribed
to the fact that the physiological data in Figs. 1 and 2 show
significant differences in heart rate between day and night
phases and therefore are in a first approximation modeled as
being governed by a piecewise constant trend. Thus each
phase of steady physical stress leads to a stable fixed point in
g; particularly a distinct circadian variation implies, beside a
bimodal probability distribution as seen in the last section,

bistability in regard to the deterministic part of the Langevin
equation.

The region of g�x ��� in Figs. 9 and 10 between two stable
fixed points is determined both by the standard deviation of
the noise source and by the transition between the phases: As
was shown above, g is flattened by increasing � �Fig. 5� and
by a long interval of strictly monotone ��t� �Figs. 6–8�. Kuu-
sela �21� indicates that such a plateau phase in the recon-
structed g is characteristic for patients suffering of conges-
tive heart failure. For this observation potential explanations
are offered by the two effects mentioned: The deteriorated
performance of the cardiovascular system might result in de-
celerated adaptation mechanisms and thus longer transitional
phases. Simultaneously the two fixed points will draw nearer
due to the reduced activity of the patient, which will raise, in
spite of the decreased absolute heart rate variability �29–31�,
the relative value of �. A decision on which explanation
accounts for the differences between CHF patients and ref-
erence group is to be based on a careful analysis of the re-
spective time series.

In the discussion above we have used the results that we
derived from our model under the assumption of ��0. In-
deed the time delays used in Figs. 9 and 10 are small com-
pared to the lengths of phases with constant ��t�, which last
	104 beats. However, g�x ��� exhibits a � dependency, where
the predictions from our model are best met at delays 	102

beats, while g flattens for decreasing �. This results from
correlations between successive heart beats including respi-
ration and adaptation to environmental influences varying on
time scales of seconds and minutes. Only if the parts of the
signal that are modeled to be stochastic �Eq. �4�� are decor-
related, the assumption for Eq. �18� holds and the derived
predictions are valid. Note that our predictions also fail,
when � is too large and ��t+�����t� does not hold any
more: A time delay comparable to the lengths of the constant
phases conceals circadian variation and instead suggests a
stationary regulatory mechanism towards mean heart rate.

Our hypothesis, that bistability in g is caused by circadian
variation, can be tested by applying the reconstruction algo-
rithm to day and night phases of the time series separately:
The sequence of RR intervals of Fig. 1 is split up into three
parts as shown in Fig. 11. The associated g�x ��� graphs are

FIG. 9. g�x ��� for the RR interval time series in Fig. 1. The two
stability points at x�0.85 and 1.1 s correspond to the averages of
day and night phases, respectively. g�x ��� flattens for decreasing �
due to correlations between successive heart beats.

FIG. 10. g�x ��� for the RR interval time series in Fig. 2. g�x ���
exhibits a relatively flat region between the two stability nodes at
x�0.7 and 1.1 s due to the distinct transitional phase in the time
series.
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given in Figs. 12–14 for �=102 and 103. All of them are
characterized by monostable behavior with a fixed point at
x�0.85 s �phases I and III� and 1.15 s �phase II�, respec-
tively. These values perfectly agree with those of the bistable
g�x ��� in Fig. 9, the shape of which is thus the result of the
concatenation of the three stationary phases I-III to one
single time series with a nonconstant trend.

Figures 12–14 match the observations of Ghasemi et al.
�22�, who also found linear g�x �1� in 6-h time series, at least
in the case of healthy patients. For persons suffering from
congestive heart failure, however, a flat cubic dependence on
x was suggested for the deterministic force. We suppose that
these observations, which differ from the predictions derived
from our model, are to be ascribed to the correlations present
in the time series: As discussed above for Figs. 9 and 10,
g�x ��� flattens for decreasing �, i.e., if the delay parameter
approaches the correlation time. As Ghasemi and co-workers
set �=1, their calculations are performed within the range of
correlations, which they indicate themselves by determining
the Markov time scale. The latter is significantly increased in
CHF patients, which explains the deviations from our model,
which comprises �-correlated noise only.

The Langevin equation under study hence describes pro-
cesses, for which values of the empirical delay parameter �
can be found, which are much larger than the correlation
time of the data and yet negligible in comparison to the time
scale of the trend. In the range of such adequate �, however,
the stable nodes of g�x ��� become independent of the time
delay and indicate �i in case of a piecewise constant trend.
As an application in cardiology, this offers the possibility to
calculate mean heart rate of day and night phases, respec-
tively, and thus to determine the range of these two station-
ary phases independently of potentially erroneous informa-
tion such as diaries and markers.

V. SUMMARY

In this article the statistical properties of a stochastic pro-
cess subject to a nonstationary regulatory mechanism have
been analyzed: Global and conditional probability densities,
as well as the moments of the distribution were derived and
applied on several simple model systems. These results were
used to explain observations recently made for RR interval

FIG. 11. 24-h time series of RR intervals X�t� over beat number
t as seen in Fig. 1. Day and night phases are separated by vertical
lines.

FIG. 12. g�x ��� for phase I as given in Fig. 11 with �=102 and
103. A single stable fixed point at x�0.85 s is detected, correspond-
ing to the leftmost zero crossing in Fig. 9.

FIG. 13. g�x ��� for phase II as given in Fig. 11 ��=102 and 103�,
exhibiting a single stable fixed point at x�1.15 s.

FIG. 14. g�x ��� for phase III as given in Fig. 11 ��=102 and
103�, exhibiting a single stable fixed point at x�0.85 s.
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time series: Both a polymodal probability distribution and
polystability displayed in the deterministic term of the
Langevin equation were in a mathematically stringent way
traced back to a common cause, phases of different physical
stress, especially circadian variation. Moreover we offered
explanations for the differences in the shape of g between
CHF patients and the reference group of healthy subjects.
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APPENDIX A: DERIVATION OF EQ. (10)

Equation �7� defines the moments of X

�Xn� = �
−�

�

xn��x�dx =
�5�,�6��

−�

�

xn�
−�

�

���s����x − s�dsdx

=
uªx−s�

−�

�

���s��
−�

�

�u + s�n���u�duds .

Expanding the term �u+s�n �28� gives

�Xn� = 	
k=0

n 
n

k
��

−�

�

sk���s�ds�
−�

�

un−k���u�du

=
�8�,�9�

	
k=0

n 
n

k
���k���n−k�

in accordance with Eq. �10�. �

APPENDIX B: DERIVATION OF EQS. (11) and (12)

In the first instance ��t� is confined to be strictly increas-
ing. For an infinitesimally small interval �x ,x+dx�

���x�dx = P�x  ��t�  x + dx

= P��−1�x�  t  �−1�x + dx� .

The probability is thus given by the length of the interval
��−1�x� ,�−1�x+dx�� relative to the whole duration �It� of the
measurement.

���x�dx =
��−1�x + dx� − �−1�x��

�It�
. �B1�

Expanding �−1�x+dx� around x

�−1�x + dx� = �−1�x� + � d

ds
�−1�s��

s=x
dx

gives

���x�dx =
1

�It�
�� d

ds
�−1�s��

s=x
�dx ,

which is Eq. �11�. �

For general ��t� the sampling interval It is split up into K
subintervals It

�k� such that ��t� is monotone on each It
�k�;

hence the inverse exists and is denoted as �k
−1�x� for every

It
�k�. Equation �B1� is then substituted by

���x�dx = 	
k:x�It

�k�

��k
−1�x + dx� − �k

−1�x��
�It�

.

Accordingly Eq. �12� is obtained. �

APPENDIX C: PROOF OF EQ. (20)

The conditional probability density ��x̂ ,x ��� is considered
in the limiting case ��0.

��x̂,x�0� =
�19� 1

�It�
�

It

���x − ��t�����x̂ − ��t��dt .

In the same way as in Appendix B the interval It is decom-
posed into K subintervals It

�k�= �tk−1 , tk� with time steps t0

� t1� ¯ � tK−1� tK such that ��t� is monotone on each It
�k�.

Thus

��x̂,x�0� =
1

�It�
	
k=1

K �
tk−1

tk

���x − ��t�����x̂ − ��t��dt .

With ��t� being piecewise surjective the integration variable
is changed from t to �

��x̂,x�0� = 	
k=1

K �
��tk−1�

��tk�

���x − �����x̂ − ��
1

�It�
dt

d�
d�

= 	
k=1

K �
��It

�k��
���x − �����x̂ − ��

1

�It�
� dt

d�
�d�

= �
��It�

���x − �����x̂ − ��
1

�It�
	

k:����It
�k��

� 1

�d�/dt�
�d�

= �
I�

���x − �����x̂ − ��

�
1

�It�
	

k:���I�
�k��

�� d

ds
�k

−1�s��
s=�
�d�

=
�12��

I�

���x̂ − �����x − �������d� .

As above �k
−1�x� denotes the inverse of ��t� on the subinter-

val It
�k�. �

APPENDIX D: PROOF OF EQ. (23)

Assuming ��0
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g�x� + x =
�22� 1

��x��−�

+�

x̂��x̂,x�0�dx̂

=
�20� 1

��x��−�

+�

x̂�
I�

���x − �����x̂ − �������d�dx̂

=
1

��x��I�

���x − ��������
−�

+�

x̂���x̂ − ��dx̂d�

=
sªx̂−� 1

��x��I�

���x − �������

���
−�

+�

s���s�ds + ��
−�

+�

���s�ds�d�

=
�5��

−�

+�

s���s�ds +
1

��x��I�

���x − ��������d� ,

which is Eq. �23�. �

APPENDIX E: g„x… IN CASE OF A LINEAR TREND

The function g�x� is calculated for ��t� as given in Eq.
�29�. Assuming symmetric ���x�

g�x� + x =
�23� 1

��x��I�

s���x − s����s�ds .

The denominator is

��x� =
�5�,�6��

−�

�

���s����x − s�ds

=
�30��

−�

� �It�
�I��

��I���x����x − s�ds

=
�It�
�I���I�

���x − s�ds .

The numerator is calculated as

�
I�

s���x − s����s�ds =
�30��

I�

s���x − s�
�It�
�I��

��I���s�ds

=
�It�
�I���I�

s���x − s�ds .

Thus

g�x� =

�
I�

s���x − s�ds

�
I�

���x − s�ds

− x

as suggested in Eq. �31�. �
Substituting u for x−s gives

g�x� =

x�
Iu

���u�du − �
Iu

u���u�du

�
Iu

���u�du

− x = −

�
Iu

u���u�du

�
Iu

���u�du

with Iu= �x−�max,x−�min�.
We now consider the special case, in which ���x� is con-

centrated on some interval I� in such way that ���x��0 if
x� I�. Then two limiting cases can be analyzed: First, if
I�� Iu,

g�x� � −

�
I�

u���u�du

�
I�

���u�du

= − �
I�

u���u�du

and vanishes due to the symmetry of ���u�. �

Second, if I�� Iu=�, l’Hospital’s rule is used to approxi-
mate g�x�.

g�x� = −

�

�x
�

x−�max

x−�min

u���u�du

�

�x
�

x−�max

x−�min

���u�du

= −
�u���u��u=x−�min

− �u���u��u=x−�max

����u��u=x−�min
− ����u��u=x−�max

,

where the rule for differentiating a parameter integral �28�
has been applied.

If ���x−�min�����x−�max� �e.g., for white noise and x
��min�, g�x� is written as

g�x� = −
�x − �min����x − �min�

���x − �min�
= − x + �min

and for ���x−�min�����x−�max�

g�x� = − x + �max.

Hence, if x is sufficiently far from I�, i.e., if x� I� is such
that the given requirements are fulfilled, then g�x� converges
to linear decrease with slope −1. �
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